Anyone who presents a radically new scientific theory must expect hostility, ridicule and stupefaction. Up to a point (up to a point) this is even healthy, since a society where new ways of viewing reality hoved on the horizon every two years or so would be bewildering in the extreme. What generally happens is that the would-be innovator is told that everything that is true in the new theory is already contained in the current theory, while everything that differs from the existing theory is almost certainly wrong. The new theory is thus either redundant or misguided or both.
And yet we need new theories, by which I do not mean extensions of the current paradigm, or patched up versions, but something that really does start with substantially different first principles. Viable new ways of viewing the world are not easy to come by, and inventing a symbolic system appropriate to the new view is even more difficult.

Now, it is quite legitimate to keep in full view features of the official theory that are solidly based, provided one rephrases them in terms of the competing theory. Ideally, one would like to see the assumptions of the new theory leading to something similar but, clearly, it is all too easy to fudge things up when one knows where one would like to end up. Such an attempt is, however, instructive since it focuses attention on what extra assumptions apart from the basic postulates are necessary if one wants to find oneself in a certain place. But if predictions of the new theory don’t differ from the existing one, there is little justification for it, although the new theory may still have a certain explanatory power, intuitive or otherwise, which the prevailing theory lacks.
Now, at first sight, Ultimate Event Theory, may appear to be nothing more than an eccentric and pretentious way of presenting the same stuff. Instead of talking of molecules and solid objects, Eventrics and Ultimate Event Theory speak of ‘event-clusters’, ‘event-chains’ and the like. But since the ‘laws’ governing these new entities must, so the argument goes, be the very same laws governing solid bodies and atoms, the whole enterprise seems pointless. Certainly, I am quite happy to do mechanics without continually reinterpreting ‘body’ as ‘relatively persistent event-cluster’ — I would be crazy to behave otherwise. However, as I examine the bases of modern science and re-interpret them in terms of the principles of Eventrics, I find that there are marked differences not only in  the basic concepts but, occasionally, in what can be predicted. There are, for example, Newtonian concepts for which I cannot find any precise equivalent and the modern concept of Energy, not in fact employed by Newton, which has become the cornerstone of modern physics, is conspicuously absent (Note 1). There are also predictions that can be made on the basis of UET that completely conflict with experiment amd observation (Note 2) but at least such discrepancies focus my attention on this particular area as a problematic one.
I start by examining Newton’s Laws of Motion, perhaps the most significant three sentences ever to have been penned by anyone anywhere.
They are :
1. Every body continues in its state of rest or uniform straight-line motion unless compelled to change this state by external imposed forces.
2. Change of a body’s state of motion is proportional to the appled force and takes place in the direction of the straight line in which the force acts.
3. To every action there is an equal and oppositely directed action.

How does all this shape up in terms of Ultimate Event Theory?
      It is first necessary to make clear what ‘motion’ means in the context of Ultimate Event Theory (UET). Roughly speaking motion is “being at different places at different times” (Bertrand Russell). Yes, but what is it that appears at the different places and what and where are these ‘places’? The answer in UET is : the ‘what‘ are bundles of ultimate events, or, in the simplest case, a single ultimate event, while the ‘places’ are three-dimensional grid-positions on the Locality,  K0 , where all ultimate events are motionless. Each constituent of physical reality is, thus, always ‘at rest’ and it is only meaningful to speak of ‘motion’ with respect to event-chains (sequences of ultimate events). But these event-chains do not themselves ‘move’ : the constituent events flash in and out of existence while remaining somehow bonded together (Note 3).  It is all like a rhythmically flashing lamp that we carry around from room to room — except that there is no lamp, only a connected sequence of flashes.   As Heraclitus put it, “No man ever steps into the same river twice” .
To clear the ground, we might thus take as the

Zeroth Law of Motion : There is no such thing as continuous motion.

We now introduce the idea of the successive appearance and disappearance of events which replaces the naïve concept of continuous motion.

First Law.  The ‘natural tendency’ of every ultimate event is to appear once on the Locality at a single spot and never reoccur.

(Remark. When this does not happen, we have to suppose that something equivalent to Newton’s ‘Force’ is at work, i.e. something that is not itself composed of ultimate events but which can affect them, as for example displace them a position where they would be expected or simply enable them to re-occur (repeat more or less identically).

Second Law. When an event or event-cluster acquires ‘Dominance’ it is capable of influencing other ultimate events, but it must first of all acquire ‘Self-Dominance’, the power to repeat (nearly) identically.

From here on, the Laws are rephrasings of Newton though perhaps with an added twist:

Third Law.  An ultimate event, or event-cluster, that has acquired self-dominance continues to repeat (nearly) identically in a straight line from instant to instant except when subject to the dominance of other event-chains.  

(Remark: It is an open question whether an event or event-cluster that has acquired ‘Self-Dominance’, will carry on repeating indefinitely in this way, but for the moment we assume that it does.)

Fourth Law. The dominance of one event-chain over another is measured by the extent of the deviation from a straight line multiplied by the ‘event-momentum’ of the constituent events of the event-cluster.

(Remark. I am still searching  for the exact equivalent of Newton’s excellent, and by no means obvious,  concept of ‘momentum’ which gives us the ‘quantity’ of ‘matter-in-motion’ so to speak. Event-clusters  obviously differ in their spread (number of grid-positions occupied), their density (closeness of the occupied places) and the manner of their reappearance at successive instants, but there are other considerations also, such as ‘intensity’ which need exploration.)

Fifth Law.
In all interactions between event-clusters the dominance of one event-cluster over another is met by an equal and oppositely directed subsequent reverse dominance.  

(Remark. Note that Newton’s Third Law (the Fifth in this list) is the only one of his laws that refers to events only (action/reaction) without mentioning  bodies.)

Note 1. Newton did not use the term energy and even as late as the mid nineteenth-century physicists like Mayer and Helmholtz who did so much to develop the energy concept still talked of ‘Force’.  J.J. Thomson (Lord Kelvin) seems to have been the first physicist to introduce the term into physics.

Note 2. For example, I find I am unable to explain why what we call light does not pass right through every possible obstacle as neutrinos almost always do  — clearly this will require some new assumption.

Note 3 No event is ever exactly the same as any other, since, even if two ultimate events are alike in all other respects, they do not occupy the same position on the Locality.

SH 23/7/12